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Under an applied external load the global load-sharing fiber bundle model, with individual fiber strength
thresholds sampled randomly from a probability distribution, will relax to an equilibrium state, or to complete
bundle breakdown. The relaxation can be viewed as taking place in a sequence of steps. In the first step all
fibers weaker than the applied stress fail. As the total load is redistributed on the surviving fibers, a group of
secondary fiber failures occur, etc. For a bundle with a finite number of fibers the process stops after a finite
number of steps, tf. By simulation and theoretical estimates, it is determined how tf depends upon the stress,
the initial load per fiber, both for subcritical and supercritical stress. The two-sided critical divergence is
characterized by an exponent −1/2, independent of the probability distribution of the fiber thresholds.
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I. INTRODUCTION

Bundles of fibers, with a statistical distribution of break-
down thresholds for the individual fibers, are simple and in-
teresting models of failure processes in materials. They can
be analyzed to an extent that is not possible for most mate-
rials �for reviews, see �1–5��.

We consider a bundle with a large number N of elastic and
parallel fibers, clamped at both ends. When the load on fiber
i is increased beyond a threshold value xi, the fiber ruptures.
The breakdown thresholds xi for the separate fibers are as-
sumed to be independent random variables with a probability
density p�x�, and a corresponding cumulative distribution
function P�x�:

Prob�xi � x� � P�x� = �
0

x

p�y�dy . �1�

The mechanism for how the extra stress caused by a fiber
failure is redistributed among the unbroken fibers must be
specified. We study here the classical version, the equal-load-
sharing model, in which a ruptured fiber carries no load, and
the increased stress caused by a failed element is shared
equally by all the remaining intact fibers in the bundle �6�.

If an external load F is applied to a fiber bundle, the
resulting failure events can be seen as a sequential process
�7–9�. In the first step all fibers that cannot withstand the
applied load break. Then the stress is redistributed on the
surviving fibers, which compels further fibers to fail, etc.
This iterative process continues until all fibers fail, or an
equilibrium situation with a nonzero bundle strength is
reached. Since the number of fibers is finite, the number of
steps, tf, in this sequential process is finite. In this paper we
determine how tf depends upon the number of fibers and,
more importantly, upon the stress �, the applied external load
per fiber,

� = F/N . �2�

At a force x per surviving fiber, the total force on the
bundle is x times the number of intact fibers. The expected or
average force at this stage is therefore

F�x� = Nx�1 − P�x�� . �3�

One may consider x to represent the elongation of the
bundle, with the elasticity constant set equal to unity. The
maximum Fc of F�x� corresponds to the value xc for which
dF /dx vanishes. Thus

1 − P�xc� − xcp�xc� = 0. �4�

We characterize the state of the bundle as subcritical or su-
percritical depending upon the stress value relative to the
critical stress

�c = Fc/N , �5�

above which the bundle collapses completely. Critical prop-
erties of fiber bundles have been discussed before, but with a
signature different from the one that we use here, and always
with the critical point approached from the subcritical side
�3,8,10�. The function tf��� that we focus on, however, ex-
hibits critical divergence when the critical point is ap-
proached from either side. As an example, we show in Fig. 1
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FIG. 1. Number of relaxation steps tf��� for a fiber bundle with
a uniform threshold distribution �11�. Here �c=0.25. The figure is
based on 1000 samples, each with N=106 fibers.
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tf��� obtained by simulation for a uniform threshold distri-
bution.

We study the stepwise failure process in the bundle, when
a fixed external load F=N� is applied. Let Nt be the number
of intact fibers at step t, with N0=N. We want to determine
how Nt decreases until the degradation process stops. With
Nt intact fibers, an expected number

�NP�N�/Nt�� �6�

of fibers will have thresholds that cannot withstand the load,
and consequently these fibers break immediately. Here �X�
denotes the largest integer not exceeding X. The number of
intact fibers in the next step is therefore

Nt+1 = N − �NP�N�/Nt�� . �7�

Since N is a large number, the ratio

nt =
Nt

N
�8�

can for most purposes be considered a continuous variable.
By �7� we have essentially �7–9�

nt+1 = 1 − P��/nt� . �9�

In Sec. II we study tf��� in the supercritical domain, while
Sec. III is devoted to subcritical situations. Simulation results
are presented for two threshold distributions, the uniform and
a Weibull distribution, and these are compared with detailed
analytic results. The theoretical analysis is, however, not lim-
ited to these special threshold distributions. In Sec. IV we
summarize our results and discuss briefly the approximations
involved.

II. SUPERCRITICAL RELAXATION

We investigate first the supercritical situation, ���c,
with positive values of

� = � − �c, �10�

and start with the simplest model.

A. Uniform threshold distribution

Consider a bundle in which the failure thresholds are dis-
tributed according to the uniform distribution

P�x� = �x for 0 � x � 1,

0 for x � 1.
� �11�

For this case the load curve �3� is parabolic,

F = Nx�1 − x� , �12�

with the critical point at xc=1/2, �c=1/4. Simulation results
for the uniform threshold distribution are presented in Fig. 1.

The basic equation �9� takes the form

nt+1 = 1 −
�

nt
= 1 −

1
4 + �

nt
. �13�

This nonlinear iteration can be transformed into a linear one
by the following procedure. Introduce first

nt = 1
2 − yt

	� , �14�

into �13�, with a result that may be written

yt+1 − yt

1 + ytyt+1
= 2	� . �15�

Setting

yt = tan vt, �16�

we have

2	� =
tan vt+1 − tan vt

1 + tan vt+1 tan vt
= tan�vt+1 − vt� . �17�

Hence vt+1−vt=tan−1�2	��, with solution

vt = v0 + t tan−1�2	�� . �18�

In the original variable the solution reads

nt = 1
2 − 	� tan
tan−1
 1

2 − n0

	�
� + t tan−1�2	��� �19�

= 1
2 − 	� tan�− tan−1�1/2	�� + t tan−1�2	��� , �20�

where n0=1 has been used.
Equation �13� shows that when nt obtains a value in the

interval �0,��, the next iteration gives complete bundle fail-
ure. Taking nt=� as the penultimate value gives a lower
bound, tf

l , for the number of iterations, while using nt=0 in
�20� gives an upper bound tf

u. Adding unity for the final it-
eration, �20� gives the bounds

tf
u��� = 1 +

2 tan−1�1/2	��
tan−1�2	��

, �21�

and

tf
l��� = 1 +

tan−1�� 1
4 − ��/	�� + tan−1�1/2	��

tan−1�2	��
. �22�

It is easy to show that tf
u���− tf

l���=1. In Fig. 2�a� we show
that these bounds nicely embrace the simulation results.

Note that both the upper and the lower bound behave as
�−1/2 for small �. A rough approximation near the critical
point is

tf��� � Ksuper�� − �c�−1/2 �23�

with Ksuper=� /2.

B. General threshold distributions

The uniform distribution is amenable to analysis to a de-
gree not shared by other threshold distributions. Therefore
we now discuss how to handle other distributions, and we
start by a special case, a Weibull distribution of index 5,

P�x� = 1 − e−x5
, x � 0. �24�

The critical parameters for this case are xc=5−1/5=0.724 78
and �c= �5e�−1/5=0.593 399 4. Simulation results for tf���
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are displayed in Fig. 2�b� for the Weibull supercritical case.
The variation with the external stress � is qualitatively simi-
lar to the results for the uniform threshold distribution.

The interesting values of the external stress are close to
�c, because for large supercritical stresses the bundle breaks
down almost immediately. For � slightly above �c the itera-
tion function

nt+1 = f�nt� = 1 − P��/nt� = e−��/nt�
5
, �25�

takes the form sketched in Fig. 3.
The iteration function is almost tangent to the reflection

line nt+1=nt and a long channel of width proportional to �
appears. The dominating number of iterations occur within
this channel �see Fig. 3�. The channel wall formed by the
iteration function is almost parabolic and is well approxi-
mated by a second-order expression

nt+1 = nc + �nt − nc� + a�nt − nc�2 + b��c − �� . �26�

Here nc=e−1/5 is the fixed point, nt+1=nt, of the iteration at
�=�c. With u= �n−nc� /b and �=�−�c �26� takes the form

ut+1 − ut = − Aut
2 − � , �27�

with A=ab. In the channel u changes very slowly, so we may
treat the difference equation as a differential equation:

du

dt
= − Au2 − � , �28�

with solution

t	A� = − tan−1�u	A/�� + constant. �29�

Thus

te − ts = �A��−1/2�tan−1�us
	A/�� − tan−1�ue

	A/��� �30�

is the number of iterations in the channel, starting with us,
ending with ue. This treatment is general and can be applied
to any threshold distribution near criticality. Although the
vast majority of the iterations occur in the channel, there are
a few iterations at the entrance and at the exit of the channel
that may require attention in special cases. The situation is
similar to type I intermittency in dynamical systems �11�, but
in our case the channel is traversed merely once.

For the Weibull distribution the expansion �26� has the
precise form

nt = e−��/n�5
 e−1/5 + �n − nc� − 5

2e1/5�n − nc�2 − 51/5�� − �c� ,

�31�

where nc=e−1/5, a= 5
2e1/5, b=51/5, and A= 5

2 �5e�1/5. For com-
pleteness we must also consider the number of iteration to
reach the entrance to the channel. It is not meaningful to use
the quadratic approximation �31� where it is not monoto-
nously increasing, i.e., for n�nm=nc+1/ �2a�= 6

5e−1/50.98.
Thus we take ns=nm as the entrance to the channel, and add
one extra iteration to arrive from n0=1 to the channel en-
trance. �Numerical evidence for this extra step: For �=�c the
iteration �25� starts as follows: n0=1.00, n1=0.93, n2=0.90,
while using the quadratic function with n0=nm=0.98 as the
initial value, we get after one step n1=0.90, approximately
the same value that the exact iteration reaches after two
steps.� With ne=0 we obtain from �30� in the Weibull case
the estimate
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FIG. 2. Simulation results with supercritical stress for �a� the
uniform threshold distribution �11�, and �b� the Weibull distribution
�24�. The graphs are based on 10 000 samples with N=106 fibers in
each bundle. Open circles represent simulation data and dashed
lines are the theoretical estimates �21� and �22� in �a� and �32� in
�b�.
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FIG. 3. The iteration function f�n� for the Weibull distribution
�24�. Here �=0.6, slightly greater than the critical value �c

=0.593 399 4.
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tf = 1 + �A��−1/2�tan−1�e−1/5	A/�/5b� + tan−1�e−1/5	A/�/b�� ,

�32�

with A= 5
2 �5e�1/5 and b=51/5.

We see in Fig. 2�b� that the theoretical estimate �32� gives
an excellent representation of the simulation data. Near the
critical point �32� has the asymptotic form

tf � ��A��−1/2 = Ksuper�� − �c�−1/2, �33�

with Ksuper=��2/5�1/2�5e�−1/10. The critical index is the same
as for the uniform threshold distribution. The divergence is
caused by the large number of iterations in the narrow chan-
nel in Fig. 3. For a general threshold distribution such a
channel will always be present, and therefore the divergence
�33� is universal. Moreover, the amplitude of ��−�c�−1/2, as
well as an excellent representation of the complete tf���
function may, for a given threshold distribution, be obtained
by the same procedure as used above for the Weibull case.

III. SUBCRITICAL RELAXATION

We now assume the external stress to be subcritical, �
��c, and introduce the positive parameter

� = �c − � �34�

to characterize the deviation from the critical point.
Also in the subcritical situation a bundle with the uniform

threshold distribution �11� can be analyzed analytically to a
greater extent than for other distributions, and consequently
we start with this case.

A. Uniform threshold distribution

Using a similar method as in the supercritical situation we
introduce into �13�,

nt = 1
2 + 	�/zt, �35�

as well as �= 1
4 −�, with the result

2	� =
zt+1 − zt

1 − zt+1zt
. �36�

In this case

zt = tanh wt �37�

is the useful substitution. It gives

2	� =
tanh wt+1 − tanh wt

1 − tanh wt+1 tanh wt
= tanh�wt+1 − wt� . �38�

Thus wt+1−wt=tanh−1�2	��, i.e.,

wt = w0 + t tanh−1�2	�� . �39�

Starting with n0=1, we obtain z0=2	� and hence

wt = �1 + t�tanh−1�2	�� . �40�

This corresponds to

nt =
1

2
+

	�

tanh��1 + t�tanh−1�2	���
�41�

in the original variable.
Apparently nt reaches a fixed point n*= 1

2 +	� after an
infinite number of iterations. However, our bundle contains a
finite number of fibers, and therefore only a finite number of
steps is needed for the iteration to arrive at a fixed point N*

of the integer iteration �7�,

Nt+1 = N − ��N2/Nt� . �42�

Since X� �X��X+1 a fixed point N* of �42� must satisfy �8�

N

2
�1 + 	1 − 4�� � N* �

1
2 �N + 1 + 	N2�1 − 4�� + 2N + 1� .

�43�

It is interesting to note that �42� has in general several
fixed points for a given value of �. With N=106 and �
=0.249, for instance, there are nine fixed points, viz.
531 623, 531 624, …, 531 631, the complete set of integers
within the interval �43�. Since our iteration starts high at
N0=N, with steadily decreasing values of Nt, it will stop at
the upper fixed point, the largest integer satisfying �43�.

As long as N�1−4��	1, which is fulfilled in our simula-
tions, we may take

Nu
* =

N

2
�1 − 	1 − 4�� +

1

2
�1 + �1 − 4��−1/2� �44�

as a good approximation to the upper fixed point �in the
example above �44� gives 531 631.1, compared with Nu

*

=531 631�.
As a consequence we use

nt =
Nu

*

N
=

1

2
+ 	� +

1

4N
�2 + �−1/2� �45�

as the final value in �41�. Consequently we obtain the fol-
lowing estimate for the number of iterations to reach this
value:

tf��� = − 1 +
coth−1�1 + �1 + 2	��/4N��

tanh−1�2	��
. �46�

We see in Fig. 4�a� that the simulation data are well approxi-
mated by the analytic formula �46�.

For very large N �46� is approximated by

tf =
ln�N�

4
�−1/2 = Ksub��c − ��−1/2 �47�

with Ksub= ln�N� /4. The critical behavior is again character-
ized by a square root divergence.

B. General threshold distribution

Again we use the Weibull distribution �24� as an example
threshold distribution. Simulation results for the subcritical
Weibull distribution are shown in Fig. 4�b�.

Forgetting for the moment the finiteness of the fiber
bundle, the iteration �9�,
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nt+1 = 1 − P��/nt� , �48�

will reach a fixed point n* after infinite many steps. The
deviation from the fixed point, nt−n*, will decrease exponen-
tially near the fixed point,�7–9,12�

nt − n* 
 e−t/�, �49�

with

� = 1/ln�n*2�−1/p��/n*�� . �50�

For the Weibull threshold distribution, in particular,

p��/n*� = 5��/n*�4 exp�− ��/n*�5� = 5�4/n*3, �51�

and thus

� = 1/ln�n*5/5�5� �52�

for the Weibull case. If we allow ourselves to use the expo-
nential formula �49� all the way from n0=1, we obtain

nt − n* = �1 − n*�e−t/�. �53�

For a finite number N of fibers the iteration will stop after
a finite number of steps. It is a reasonable supposition to
assume that the iteration stops when Nt−N* is of the order 1.

This corresponds to take the left-hand side of �53� equal to
1/N. The corresponding number of iterations is then given
by

tf = � ln�N�1 − n*�� �54�

in general, and

tf =
ln�N�1 − n*��
ln�n*5/5�5�

�55�

in the Weibull case. Solving the Weibull iteration n*

=exp�−�� /n*�5� with respect to � and inserting into �55�, we
obtain

tf = −
ln�N�1 − n*��
ln�5�− ln n*��

, �56�

� = n*�− ln n*�1/5. �57�

These two equations represent the function t��� on parameter
form, with n* running from nc=e−1/5 to n*=1. In Fig. 4�b�
this theoretical estimate is compared with the simulation
data. The agreement is satisfactory.

For n*=nc=e−1/5 �56� shows that tf is infinite, as it should
be. To investigate the critical neighborhood we set n*=nc�1
+�� with � small, to obtain to lowest order

tf =
ln�N�

5�
, �58�

�c − � = 5
2��2. �59�

The combination of �58� and �59� gives, once more, the
square root divergence

tf���  Ksub��c − ��−1/2, �60�

now with the magnitude

Ksub = 10−1/2�5e�−1/10 ln�N� . �61�

For a general threshold distribution the divergence and its
amplitude are most easily deduced by expanding both the
load curve �=x�1− P�x�� and the characteristic time �
around the critical threshold xc. To lowest contributing order
in xc−x we find

� = �c − 1
2 �2p�xc� + xcp��xc�� + �xc − x�2 �62�

and

� =
xcp�xc�

2p�xc� + xc
2p��xc�

�xc − x� . �63�

Inserting for �xc−x� from the equation above, and using �55�,
we find

tf = Ksub�
−1/2 �64�

with

Ksub = xcp�xc��4p�xc� + 2xcp��xc��−1/2 ln�N� . �65�

As a check, the amplitude expression �65� yields the expres-
sions for the uniform and the Weibull distributions derived
above.
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FIG. 4. Simulation results with subcritical stress for �a� the uni-
form threshold distribution, and �b� the Weibull distribution �24�.
The graphs are based on 10 000 samples with N=106 fibers in each
bundle. Open circles represent simulation data and the dotted lines
are the theoretical estimates, Eq. �46� in �a� and Eqs. �56� and �57�
in �b�.

RELAXATION DYNAMICS IN STRAINED FIBER BUNDLES PHYSICAL REVIEW E 75, 056112 �2007�

056112-5



To throw some light on how the magnitude of the ampli-
tude Ksub depends on the form of the threshold distribution,
we consider a Weibull distribution,

P�x� = 1 − e�x/a�k
�66�

with varying coefficient k, and constant average strength.
With a=�1+1/k� the average strength �x� equals unity, and
the width takes the value

w = ��x2� − �x�2�1/2 = ��1 + 2/k�/2�1 + 1/k� − 1�1/2.

�67�

Here  is the gamma function. Using the power series ex-
pansion �1+z�=1−0.577z+0.989z2+¯ we see how the
width decreases with increasing k,

w 
1.52

k
. �68�

For the Weibull distribution �66� we use �65� to calculate
the amplitude Ksub, with the result

Ksub = ��1 + 1/k�/2k�1/2�ke�−1/2k ln�N�  �2k�−1/2 ln�N� ,

�69�

the last expression for large k. Comparison between �68� and
�69� shows that for narrow distributions

Ksub 
 	width. �70�

That narrow distributions give small amplitudes could be
expected: Many fibers with strengths of almost the same
magnitude will tend to break simultaneously, hence the re-
laxation process goes quicker.

To use the exponential approach to the fixed point, as we
have done, may seem to be doubtful. But the rationale is that
for small � the starting point n0=1 is already rather close to
the fixed point, while for larger � it does not matter much if
the first few iterations are not described well by the expo-
nential formula, since in any case the majority of the itera-
tions occur close to the fixed point.

IV. CONCLUDING REMARKS

A detailed numerical and analytic study of the relaxation
dynamics in finite fiber bundles subjected to external loads is
presented. The relaxation takes place in a number, tf���, of
steps: In each step all fibers weaker than the load per surviv-
ing fiber burst, and the relaxation proceeds until equilibrium
is reached or until all fibers have failed. The analytic esti-
mates are based on the average strength of a group of fibers.
The comparison with the simulation data using the probabi-
listic distribution of fiber strength shows that this is a satis-
factory calculation procedure.

As a function of the initial stress � the number of steps,
tf���, shows a divergence ��−�c�−1/2 at the critical point,
both on the subcritical and supercritical side. This is a ge-
neric result, valid for a general probability distribution of the
individual fiber breakdown thresholds.

On the supercritical side tf��� is independent of the sys-
tem size N for large N. On the subcritical side there is, how-
ever, a weak �logarithmic� N dependence, as witnessed by
Eqs. �46�, �47�, and �55�. In Fig. 5 we give numerical evi-
dence for this finite-size dependence. We also note that the
critical amplitude ratio takes the same value

Ksub/Ksuper = ln�N�/2� �71�

for the uniform and the Weibull distributions. This indicates
strongly a universal critical amplitude ratio, independent of
the threshold distribution.
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FIG. 5. Numerical evidence for the ln�N� dependence of tf in the
subcritical case. �a� shows tf versus � for different system sizes: 106
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form distribution �11�. Circles represent data sets for four different
applied stresses below the critical stress: ��0�
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The effective stress on the bundle shows different behav-
ior for the subcritical and supercritical cases. This has been
illustrated in Fig. 6. On the subcritical side the effective
stress level finally saturates to a value lower than its critical
value. On the other hand for the supercritical cases it grows
very quickly showing a diverging tendency.

As a final remark we note that creep phenomena, time-
dependent degradation of materials under constant applied
load, have been much studied, also in fiber bundle models
�13–18�. In the investigations that are closest to our work,
equal-load-sharing bundles with viscoelastic fibers are con-
sidered �13,14�. In that model instantaneous rupture is pre-
vented through introduction of an explicit damping mecha-
nism for the strain. Although the relaxation mechanism is
different from the one in our present study, there are simi-
larities: �i� Criticality is defined by the same static condition
�4� as here, �ii� for supercritical loads an equilibrium is
reached, while there is a finite lifetime tf in the supercritical
situation, �iii� the lifetime has, to dominating order, no size
dependence, and �iv� the lifetime has the same critical diver-
gence tf 
 ��−�c�−1/2 as in our case. In both cases the critical

exponent value − 1
2 can be tracked down to the parabolic

maximum of the static load curve near criticality. As far as
we know, the time to reach equilibrium in the subcritical
situation, i.e., the time at which the last fiber breaks, has not
yet been given for the viscoelastic model. However, since the
characteristic time scale for the infinite viscoelastic bundle
diverges with exponent −1/2 near criticality �15�, the same
critical divergence will be seen in both models. The situation
is similar for the subcritical finite size dependence of tf. Ap-
parently, this is not considered in the papers on creep, but we
expect that the exponential time dependence towards equilib-
rium for the infinite bundle would also produce a ln�N� de-
pendence for this equilibration time for a finite bundle of
viscoelastic fibers.
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